Immobilization of photocatalysts on substrates is an important factor for water purification in practical applications. In this study, an efficient Ag@AgBr photocatalytic coating was attached onto the surface of cotton fabric via radiation-induced graft polymerization and subsequent chemical reactions, and the resultant product was denoted as Cot-Ag@AgBr. The graft chains acted not only as a source of bromine, but also as an intermediate layer to anchor the Ag@AgBr photocatalytic coating via strong electrostatic interactions. The immobilized Ag@AgBr photocatalytic coating exhibited outstanding photocatalytic properties for organic dye degradation under visible light irradiation. Furthermore, Cot-Ag@AgBr presented high stability and robust durability, which conferred its excellent visible-light-driven photocatalytic activity after five rounds of photodegradation. After 10 min of ultrasonication, the amount of Ag@AgBr precipitate that leached from the Cot-Ag@AgBr was < 2%. Therefore, the as-synthesized cotton fabric offered good insight into the functionalization of polymer substrates with photocatalysts and could be useful for advanced wastewater treatment under the cyclic operations.