000
|
|
nam3i |
001
|
|
2210080938542 |
003
|
|
MiAaPQ |
005
|
|
20250724102612 |
006
|
|
m o d | |
007
|
|
cr cnu|||||||| |
008
|
|
250724s2024 xx o ||||0 eng d |
020
|
|
▼a9780443214370▼q(electronic bk.) |
020
|
|
▼z9780443214387 |
035
|
|
▼a(MiAaPQ)EBC31247007 |
035
|
|
▼a(Au-PeEL)EBL31247007 |
035
|
|
▼a(OCoLC)1428901831 |
040
|
|
▼aMiAaPQ▼beng▼erda▼epn▼cMiAaPQ▼dMiAaPQ▼d221008 |
050
|
|
▼aTP359.H8 |
082
|
|
▼a665.81 |
100
|
|
▼aK. Sleiti, Ahmad. |
245
|
00 |
▼aDesign and Analysis of Liquid Hydrogen Technologies :▼bLiquefaction, Storage, and Distribution. |
250
|
|
▼a1st ed. |
264
|
|
▼aChantilly :▼bElsevier,▼c2024. |
264
|
|
▼c©2024. |
300
|
|
▼a1 online resource (379 pages) |
336
|
|
▼atext▼btxt▼2rdacontent |
337
|
|
▼acomputer▼bc▼2rdamedia |
338
|
|
▼aonline resource▼bcr▼2rdacarrier |
505
|
|
▼aFront Cover -- Design and Analysis of Liquid Hydrogen Technologies -- Copyright Page -- Contents -- 1. Current and future hydrogen liquefaction technologies-design and analysis -- Abbreviation -- Symbols -- Subscripts -- 1.1 Introduction -- 1.2 Fundamentals of cryogenic liquefaction -- 1.3 Performance evaluation -- 1.3.1 Thermodynamic performance evaluation -- 1.3.2 Ortho-para hydrogen conversion -- 1.3.3 Composite curves -- 1.3.4 Economic evaluation -- 1.4 Current operational and conceptual hydrogen liquefaction processes -- 1.4.1 Operational hydrogen liquefaction plants -- 1.4.2 Conceptual hydrogen liquefaction processes -- 1.5 Recent advanced hydrogen liquefaction technologies -- 1.5.1 Improvement of the liquid hydrogen storage -- 1.5.2 Key components of the hydrogen liquefaction processes -- 1.5.2.1 Compressors -- 1.5.2.2 Heat exchangers -- 1.5.2.3 Expanders -- 1.5.2.4 Catalytic ortho-para hydrogen converters -- 1.6 Future directions for H2 liquefaction process -- References -- 2. Challenges and potential solutions of liquid hydrogen technologies -- 2.1 Challenges and potential solutions of liquid hydrogen technologies -- 2.2 Liquid hydrogen storage: current status, challenges, and potential solutions -- 2.2.1 Hydrogen storage methods -- 2.2.2 Boil-off of liquid hydrogen -- 2.2.2.1 Eliminating or mitigating the boil-off reason/mechanism -- 2.2.2.2 Adapting cryocoolers -- 2.2.2.3 Recovering boil-off gas for power generation -- 2.2.3 Materials and equipment of LH2 storage -- 2.3 Liquid hydrogen transportation and distribution: current status, challenges, and potential solutions -- 2.4 Liquid hydrogen applications: current status, challenges, and potential solutions -- 2.4.1 Liquid hydrogen as a fuel in power generation -- 2.4.2 Liquid hydrogen as a fuel in transportation sectors -- 2.4.2.1 Road transport -- 2.4.2.2 Railway transport. |
505
|
|
▼a2.4.2.3 Aerospace and aviation -- 2.4.3 Liquid hydrogen for heating applications -- 2.4.4 Liquid hydrogen as a feedstock -- 2.4.4.1 Crude oil refining -- 2.4.4.2 Ammonia production -- 2.4.4.3 Methanol production -- References -- 3. Design and selection of refrigerants used in liquid hydrogen plants -- 3.1 Design and selection of refrigerants used in liquid hydrogen plants -- 3.1.1 Introduction to the cryogenic refrigerants -- 3.2 Systematic thermodynamic approaches for the selection and design of cryogenic refrigerants -- 3.2.1 Flowsheet of the H2 precooling process -- 3.2.2 Process performance analysis -- 3.2.3 Selection criteria of pure refrigerant to develop cryogenic mixed refrigerants -- 3.2.4 Procedures of developing optimal mixed refrigerant composition -- 3.3 Discussion and comparison -- 3.3.1 Evaluating the performance of the mixed refrigerants -- 3.3.2 Comparison -- 3.4 Reliability, compatibility, and safety assessments of the cryogenic refrigerants -- 3.4.1 Refrigerants' description -- 3.4.1.1 Hydrocarbons -- 3.4.1.2 Ammonia -- 3.4.1.3 Carbon dioxide -- 3.4.1.4 Nitrogen -- 3.4.1.5 Hydrogen -- 3.4.2 Reliability, compatibility, and safety aspects of cryogenic refrigeration systems -- 3.5 Environmental impacts of cryogenic refrigerants -- 3.6 Summary -- References -- 4. Energy and exergy analyses of liquid hydrogen cycles -- Nomenclature -- Symbol Description (unit) -- Subscripts -- Abbreviations -- 4.1 Introduction -- 4.2 Energy and exergy models of the liquid hydrogen system -- 4.2.1 Energy and exergy models of the process equipment -- 4.2.2 Performance indicators -- 4.3 Case study example -- 4.3.1 Case study description -- 4.3.2 Assumptions and simulation results -- 4.4 Case study results and discussion -- 4.4.1 Energy performance analysis -- 4.4.2 Exergy performance analysis -- 4.4.3 Sensitivity analysis. |
505
|
|
▼a4.4.4 Performance compassion of basic and optimized precooling processes -- 4.5 Summary -- References -- 5. Economic and environmental assessment of liquid hydrogen plants -- Abbreviations -- 5.1 Introduction -- 5.2 Economic analysis -- 5.2.1 Guthrie's method -- 5.2.2 Cost factor method -- 5.2.3 Economic performance indicators -- 5.3 Environmental analysis -- 5.4 Case study -- 5.5 Case study results and discussion -- 5.5.1 Economic analysis results -- 5.5.2 Environmental analysis results -- 5.5.3 Sensitivity analysis -- 5.5.4 Economic comparison with other liquefaction systems -- 5.6 Summary -- References -- 6. Optimization of hydrogen liquefaction processes -- 6.1 Introduction to the optimization analysis -- 6.2 Optimization methodologies for H2 liquefaction systems -- 6.2.1 Knowledge-based optimization -- 6.2.2 Genetic algorithms -- 6.2.3 Particle swarm optimization -- 6.3 Objective function(s) and constraints -- 6.3.1 Objective function(s) of the HLS optimization -- 6.3.2 Constraints of the HLS optimization -- 6.4 Case study 1: Optimizing the Mr composition -- 6.5 Case study 2: optimizing the operating conditions of the SMR-HPP -- 6.5.1 Objective function and constraints of the SMR-HPP -- 6.5.2 Optimization results of the SMR-HPP -- 6.5.3 Comparison between optimization approaches of liquid hydrogen process -- 6.6 Summary -- References -- 7. Dynamic simulation of liquid hydrogen plants -- Nomenclature -- Abbreviations -- Symbols -- 7.1 Introduction -- 7.2 Dynamic simulation procedures -- 7.3 Equipment sizing -- 7.3.1 Sizing the heat exchangers -- 7.3.1.1 Layer configuration -- 7.3.1.2 Zone configuration -- 7.3.1.3 Heat transfer configuration -- 7.3.2 Sizing the compressor -- 7.3.3 Pumps -- 7.3.4 Coolers -- 7.3.5 Piping and valves -- 7.4 Control scheme configuration -- 7.4.1 Selection of controlled variables. |
505
|
|
▼a7.4.2 Selection of manipulated variables -- 7.4.3 Selection of control configuration -- 7.4.3.1 Control of mixed refrigerants flow rate -- 7.4.3.2 Control of heat exchanger and air cooler outlet temperatures -- 7.4.3.3 Control of compressor discharge pressure -- 7.4.4 Selection of controller type and configuration -- 7.5 Case study 1: dynamic simulation of multistream cryogenic heat exchangers -- 7.6 Case study 2: dynamic simulation of centrifugal compressor unit -- 7.7 Future pathways -- 7.8 Summary -- References -- 8. Innovations and advances of hydrogen liquefaction processes -- 8.1 Introduction -- 8.2 Innovation and development approaches of liquid hydrogen processes -- 8.3 Case study: dual mixed refrigerant H2 liquefaction process -- 8.3.1 Summary of the dual mixed refrigerant hydrogen precooling process -- 8.3.2 Description of the investigated hydrogen liquefaction systems -- 8.4 Case study results and discussion -- 8.4.1 Energy performance evaluation -- 8.4.2 Exergy performance evaluation -- 8.4.3 Economic performance evaluation -- 8.4.4 Environmental performance evaluation -- 8.4.5 Comparison with other hydrogen liquefaction processes -- 8.5 Summary -- References -- 9. Hydrogen storage technologies -- Abbreviations -- 9.1 Introduction to hydrogen storage options -- 9.2 Storage of hydrogen as compressed gas -- 9.2.1 Advantages of compressed hydrogen storage -- 9.2.2 Challenges in compressed hydrogen storage -- 9.2.3 Applications of compressed hydrogen storage -- 9.3 Storage of hydrogen as liquid hydrogen -- 9.3.1 Advantages of liquid hydrogen storage -- 9.3.2 Challenges of liquid hydrogen storage -- 9.3.3 Applications of liquid hydrogen storage -- 9.3.4 Design and analysis of storage tank for liquid hydrogen -- 9.3.5 Shape and size -- 9.3.6 Structure -- 9.3.7 Material -- 9.3.8 Thermal analysis -- 9.3.9 Mechanical analysis. |
505
|
|
▼a9.4 Advances in hydrogen storage technologies -- 9.4.1 Adsorption technologies -- 9.4.2 Absorption technologies -- 9.5 Techno-economic assessment of hydrogen storage and transportation -- 9.5.1 Techno-economic modeling for compressed gaseous hydrogen -- 9.5.2 Techno-economic modeling for liquid hydrogen -- 9.5.3 Techno-economic modeling for pipeline hydrogen -- 9.6 Boil-off gas management -- 9.7 Summary -- References -- 10. Liquid hydrogen distribution -- Nomenclature -- 10.1 Introduction to hydrogen transportation and distribution options -- 10.2 Applications and technologies related to liquid hydrogen transportation and distribution -- 10.2.1 Short- and long-distance land distance transportation and distribution -- 10.2.1.1 Truck (Trailers) -- 10.2.1.2 Liquid hydrogen tankers -- 10.2.1.3 Pipeline -- 10.2.2 Long-distance overseas transportation and distribution -- 10.2.2.1 Ocean shipping as compressed gaseous hydrogen -- 10.2.2.2 Ocean shipping as liquid hydrogen -- 10.2.3 Low-pressure liquid H2 to high-pressure gaseous H2 distribution -- 10.3 Techno-economic evaluation of various pathways of hydrogen transportation and distribution -- 10.3.1 Case study -- 10.4 Challenges and solutions of liquid hydrogen transportation and distribution -- 10.5 Future directions -- 10.6 Summary -- References -- 11. Liquid hydrogen safety and handling -- Nomenclature -- 11.1 Hazards of liquid hydrogen -- 11.1.1 Physiological hazards -- 11.1.2 Physical hazards -- 11.1.3 Chemical hazards -- 11.1.4 Challenges of liquid hydrogen -- 11.2 Safety features of liquid hydrogen plants -- 11.3 Liquid hydrogen risk analysis and controls -- 11.3.1 Hydrogen risk components and safety plan -- 11.3.2 Hydrogen risk analysis -- 11.3.3 Practical example of hydrogen risk analysis -- 11.4 Regulations, codes, and standards -- 11.5 Summary -- References -- Appendix. |
505
|
|
▼aAppendix A. Example of energy and exergy analyses for H2 precooling process using a single mixed-refrigerant loop. |
588
|
|
▼aDescription based on publisher supplied metadata and other sources. |
590
|
|
▼aElectronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2025. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. |
655
|
|
▼aElectronic books. |
700
|
1 |
▼aAl-Ammari, Wahib A. |
776
|
|
▼iPrint version:▼aK. Sleiti, Ahmad▼tDesign and Analysis of Liquid Hydrogen Technologies▼dChantilly : Elsevier,c2024▼z9780443214387 |
797
|
|
▼aProQuest (Firm) |
856
|
|
▼uhttps://ebookcentral.proquest.com/lib/dongakr/detail.action?docID=31247007▼zClick to View |