Jupiter's weather layer exhibits long-term and quasi-periodic cycles of meteorological activity that can completely change the appearance of its belts and zones. There are cycles with intervals from 4 to 9 years, dependent on the latitude, which were detected in 5$\mu$m radiation, which provides a window into the cloud-forming regions of the troposphere; however, the origin of these cycles has been a mystery. Here we propose that magnetic torsional oscillations/waves arising from the dynamo region could modulate the heat transport and hence be ultimately responsible for the variability of the tropospheric banding. These axisymmetric waves are magnetohydrodynamic waves influenced by the rapid rotation, which have been detected in Earth's core, and have been recently suggested to exist in Jupiter by the observation of magnetic secular variations by Juno. Using the magnetic field model JRM33, together with the density distribution model, we compute the expected speed of these waves. For the waves excited by variations in the zonal jet flows, their wavelength can be estimated from the width of the alternating jets, yielding waves with a half period of 3.2-4.7 years in 14-23$^\circ$N, consistent with the intervals with the cycles of variability of Jupiter's North Equatorial Belt and North Temperate Belt identified in the visible and infrared observations. The nature of these waves, including the wave speed and the wavelength, is revealed by a data-driven technique, dynamic mode decomposition, applied to the spatio-temporal data for 5$\mu$m emission. Our results imply that exploration of these magnetohydrodynamic waves may provide a new window to the origins of quasi-periodic patterns in Jupiter's tropospheric clouds and to the internal dynamics and the dynamo of Jupiter.