

사용 설명서

- 1-2 <u>인터페이스 및 문헌 검색</u>
- 3-4 물질 검색 및 구조식 그리기 툴
- 5 <u>Advanced Search 검색어 지정하기</u>
- 6 <u>CAS Roles</u>
- 7-8 <u>Biosequence 검색</u>
- 9-10 <u>반응식 검색</u>
- 11-13 <u>역합성 플래너 (Retrosynthesis)</u>
- 14 <u>Markush 검색 및 PatentPak (특허솔루션)</u>
- 15 <u>판매처 검색 및 ChemDoodle[®]</u>
- 16 <u>로그인, 피드백, 도움말</u>

인터페이스 및 문헌 검색

CAS		SciFinder ⁿ	*	s	aved	History	Account
추가 CAS solutions 링크 예) Analytical Methods, Formulus, or the STN IP Protection Suite	로고를 이동	클릭하여 홈페이지로	결과 저장, 알림, Combine 기능 접근	,	이전 검색 확인		What's New, 세팅, 도움 가이드, 로그아웃

Search Interface SciFinderⁿ 은 간결한 검색 인터페이스를 제공합니다.

Searching for	Substances 검색어	
& All	Search by Substance Name, CAS RN, Patent Number, PubMed ID, AN, CAN, a	and/or DOI. Learn More
⊖ Substances	Enter a query	Draw Q
A Reactions	+ Add Advanced Search Field	Learn more about Sci <mark>Finderⁿ Advanced</mark> Search.
References	Advanced Search 기능	구조 그리기 툭 건색 식행하기
🐂 Suppliers	문헌검색, 물질 검색에서 사용 가능	

Reference Search 문헌 결과는 시각화 된 사용 친화적인 레이아웃을 제공합니다.

- 문헌은 검색어와의 관련성에 따라 순위가 매겨지고 정렬됩니다.
- 검색을 저장하거나 링크를 전달하거나 알림을 설정할 수 있습니다.
- 필터를 통해 검색결과를 좁힐 수 있습니다.
- PatentPak은 특허 전문 내 색인 된 물질의 위치를 보여줍니다.

Based on your query, we've returned the most relevant results. Would you like to load the entire result relevance. Image: Concept: Flavor in the flavor	대적으로 관련된 추가 과를 볼 수 있습니다. 색인된	물질 확인 색인된 반응식 확인 인용 문헌 확인 결과 재 정렬 결과 표시 방식	변경
Filter Behavior 1 Filter by Exclude 0 Journal (116) Patent (241) Patent (241) Review (9) DTH Filter by 또는 Exclude를 Substance Role Evelogical Study (289) 2 Biological Study (289) Process (39) Process (39) Process (39) Analytical Study (33) Properties (5) View All Full Text * Properties (5) View All	Based on your query, we've returned the most relevant results. Would you like to load the entire result set? Learn about result relevance. Load More Results	■ References a60) Sort: Relevance ▼ View: Partial Abstract ● Substances ▼ ▲ Reactions ▼ ● Cited By ▼ 다운로드 ● ▲ ■ ★ Sav Filtering: Concept: Flavor × ● 적용된 필터 선택 취소 결과 공유 Clear All Filt Excluding: Concept: Antibacterial agents ×	· 저장, 9 설정 ers
▲ Substance Role 2 해당 문현에 관련한 물질, 반응식, 인용 정보 불러오기 Biological Study (289) Confectionery composition including an elastomeric component, a cooked saccharide component, and a sensate Uses (206) 특허 전문 내 물질의 위치 확인 th John; Kabse, Kishor sation, W02006127599 A2 2006-11-30 Language: English, Database: CAplus Analytical Study (33) The present invention re 특허전문 옵션에 액세스 including cooked saccharide portion and an elastomeric material portion, each phrtton als Properties (5) Yiew All Full Text ▼ Q Substances (48) ④ Reactions (0) €€ Cited By (6) ② Citation Map	Filter Behavior Filter by Exclude	□ 1 Volatile release from 제목 선택하여 문헌 정보 확인 By: Linforth, Rob; Taylor, Andrew Perfumer & Flavorist (1998), 23(3), 47-48, 50, 52-53 Language: English, Database: CAplus Instrumental anal. was used to monitor menthol and menthone in the breath of individuals eating a range of mint-flavored candies (including chewing gum). The data demonstrate the reproducibility of breath volatile anal. for assessing aroma release from mint-flavored products. Full Text ▼ Image: Substances (2) Image: Reactions (0) 44 Cited By (19) Image: Citation Mape	
	 > Substance Role Biological Study (289) Uses (206) Process (39) Analytical Study (33) Properties (5) View All 	□ 2 해당 문헌에 관련한 물질, 반응식, 인용 정보 불러오기 Confectionery composition including an elastomeric component, a cooked saccharide component, and a sensate 6 히 전문 내 물질의 위치 확인 th John: Kabse, Kishor 히 전문 내 물질의 위치 확인 th John: Kabse, Kishor The present invention re portion, each pertion als = ● Substances (48) = A Reactions (0) (cited By (6)) ② Citation Map	

문헌 상세정보 및 검색

Paterit	Insecticidal N-substit	uted sulfilimine and <mark>sulf</mark>	<mark>foximine</mark> pyridine N-oxide	es
Patent Information	By: Bland, Douglas C.; Ross, Ron	ald, Jr.; Johnson, Peter L.; Johnson, Tim	iothy C.	
Patent Number US20140005234	Abstract: N-substituted sulfilimit controlling insects and other inv benefits shall become apparent	ne and sulfoximine pyridine N-oxides ertebrates are provided. Further embo from the description.	were prepared according to the invent odiments, forms, objects, features, adva	ion and their use in ntages, aspects, and
Publication Date 2014-01-02		Me MeS		
Application Number US2013-13919035		Me		1대프/물질구소 표시
Application Date 2013-06-17	전문의 액세스 옵션	선	CF 3	
Kind Code	PATENTPAK Viewer Full T	ext PDF: 원문 특허와 힘 Viewer: 주석이 달린 :	표적 ト께 색인된 물질 표 확인 워문이 Interactive 버전 확인	
41	Patent Family	VIONOI: T TITEL I		
Assignee	Patent Language	Kind Code PatentPak Options	Publication Date Application Numb	eer Application Date
Unknown	US20140005234 English	A1 PDF PDF+ Viewer	2014-01-02 US2013-13919035	5 2013-06-17
Source		Р	US2012-61666814	4P 2012-06-30 📍
United States	CA2876184 English	A1	2014-01-03 CA2013-2876184	2013-06-12
Database Information AN: 2014:3851 CAN: 160:144583	WO2014004086 English	 Substances Substances (31) 		임시 신청에 대한 수선 순
CAplus CAS 과학자들에 의	해 색인 및 추가된	75-09-2 591-50-4	407-25-0 1-5-1-0-1-5-1	MT 01 10
│ 문언 내 수세 및 물살		CH ₂ Cl ₂ C ₄ H ₉ I Dichloromethane Iodobenzene	C_FFGG Triffluoroacetic anhydride Puttertwi	<u> </u>
문언 내 수세 및 물실	✓ Concepts	PATENTPAK PATENTPAK	Bala builting Bala builting builting and	
문언 내 주세 및 물술	✓ Concepts✓ Substances ●	Pacter/Hac. Pacter/Hac. Role: Byproduct. Role: Byproduct. 420-06-2 3240-36-4	Preparation Role: Reactant, Reactant or Reagent 946578-00-3	

Boolean Operators 논리 연산자를 통해 정확한 텍스트 검색어를 정의할 수 있습니다.

동의어 등의 논리적 표현을 그룹화하기 위해 괄호를 사용하세요. **예:** (flavor or odor) and menthol

- AND 문서 내 두 Concept이 모두 있어야 합니다.
- **OR** 하나 또는 두 Concept이 있어야 합니다.
- NOT NOT 뒤에 포함된 단어를 제외한 문헌을 검색합니다.

Wildcards 와일드 카드를 사용하면 보다 포괄적이고 정밀한 검색이 가능합니다. 문헌검색과 물질의 이름 검색에서 사용할 수 있습니다.

단어 중간 또는 오른쪽 잘림 사용이 가능합니다.

- * 알파벳 0개 또는 무제한을 대신합니다. 예: polymorph* | immunoglobulin*conjugate*
- ? 알파벳 0개 또는 1개를 대신합니다. 예: benzonorbornen?
- 큰 따옴표 안에 있는 용어는 구문으로 검색됩니다.

예: "Programmed cell death protein"

2

CAS SciFinder

물질명과 구조식 검색

Name searches

Streptomycin 57-92-1 Streptomycin sulfate "Streptomycin sulfate" Streptomycin Sulfoximin* WO2019234160

하나 이상의 물질명 또는 식별자로 검색합니다.

Streptomycin 레코드 검색 CAS Registry number 식별자로 Streptomycin 검색 세가지 검색: Streptomycin, Streptomycin sulfate and Sulfate 두가지 검색: Streptomycin sulfate and Streptomycin Sulfoximin을 포함한 레코드 검색 특허 내 색인된 모든 물질 검색

Structure searches

물질 검색은 가장 관련성이 높은 정보, 중요한 물성 정보, 고해상도 구조식 이미지를 표시합니다.

물질 세부정보 및 Drawing Editor

Substance detail

CAS Registry number를 클릭하여 구조, 분자식, 물성 및 추가 데이터가 포함된 물질 세부정보가 표시됩니다.

		F	
분자식 F [~] 8H ₁₄ F ₄ N ₂ O ₄ S panamide, <i>N</i> -[4-cyano-3-(trifluoromethyl)phenyl]-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methy	F F ₽ ● 물질명	
y Physical Properties	Value	Condition	
olecular Weight	430.37		
elting Point (Experimental)	190-195 °C (decomp)		
iling Point (Predicted)	650.3±55.0 °C	Press: 760 Torr	- 수요 :
ensity (Predicted)	1.52±0.1 g/cm ³	Temp: 20 °C; Press: 760 Torr	
(a (Predicted)	11.49±0.29	Most Acidic Temp: 25 °C	
perimental Properties Spectra			
	 Other Names and Identifiers 	e	****
Other Names 🖕	Canonical SMILES		
Experimental Properties	N#CC1=CC=C(C=C1C(F)(F)F)NC(=O)C(O)(C)	.CS(=O)(=O)C2=CC=C(F)C=C2	
T	9 Other Names for this Substance		
	5 other marries for this Substance		

CAS Draw editor

Define structure and reaction queries with the structure editor

Advanced search 검색어 지정하기

Advanced Search Query Builder

SciFinderⁿ 메인 페이지에서 특정 문헌 및 물질 상세검색 필드를 제공합니다.

- 연산자는 OR, AND, NOT 순서로 처리됩니다.
- 연산자는 단일 Advanced Search에 허용되지 않습니다. •
- 와일드카드 사용이 가능합니다. 예: peek*
- 최대 50개의 상세 검색 필드사용이 가능합니다. (기본 검색을 사용하는 경우 49개)

Enter a	a query Q Draw					
+ Ad	d Advanced Search Field 관련 시스	느템 내 도움말 액세스 – Learn more about SciFinder ⁿ Advanced Search.				
	클릭하여 필드 선택 열기					
Examples	Reference Search	Substance Search				
	"pollution monitoring"	steel*				
검색 필드를 합칠 수 있는 연산자 선택	AND - Chemical Name - polyer	thylene AND → Tensile Strength (Mpa) → >0				
	OR Chemical Name polyp	ropylene Experimental values only.				
	검색어 해석: "pollution monitoring" and (polyethyle or polypropylene)	검색어 해석: ene Steel with tensile strength property information				
Advanced : Fields	Search 아래 상세 검색필드를 Reference • Author Name • Journal Name • Organization Name • Title • Concepts • Substances • Publication Year • Document Identifier • Patent Identifier	를 사용할 수 있습니다. Substance • CAS Registry Number • Chemical Name • Document Identifier • Molecular Formula • Patent Identifier • Experimental Spectra • Biological • Chemical Properties • Density • Electrical				

- Magnetic
- Mechanical
- **Optical and Scattering**
- Structure Related
- Thermal

CAS Roles

CAS Roles

Roles는 물질에 연결되며 문헌 내 특정 역할과 연관된 문헌을 찾을 수 있습니다.

- Super roles는 광범위한 범주이며, 관련된 모든 특정 역할로 구성됩니다. 예로는 Analytical Study, Preparation, Occurrence 등이 있습니다.
- Specific roles는 상세한 범주이며, 분석연구에서 분석물질 (Analyte)로 사용하거나 천연 추출물 (Natural Product Occurrence)와 같은 내용을 찾아볼 수 있습니다.

Roles in substance results

물질 검색에서의 Role 필터는 문헌의 물질과 연결된 역할 종류를 나타냅니다.

Roles in reference results

Role 필터는 검색한 물질이 문헌 내에 색인되어 있는 경우에 나타납니다. 물질명이나 구조 그리기를 통해 검색 후 관련 문헌 리스트를 볼 수 있습니다.

예시: 해양 오염에 관심이 많은데, 폴리프로필렌이 구체적 오염 물질로 기술된 문헌을 어떻게 찾을 수 있을까요?

폴리프로필렌을 검색하면 많은 수의 문헌이 나타납니다. Substance Role 필터에는 폴리프로필렌에 적용되는 모든 역할이 표시됩니다. 그 중 **Pollutant**는 폴리프로필렌을 오염 물질로 표기 및 설명한 1,657개의 문헌이 있음을 나타냅니다.

substances • polyp	ropylene _{Fi}	lter by	Reference	2S (278,226)		Sort: Publication Date: Newest 👻 View	
9003-07-0	K N A	Document Type	□	▲ Reactions -	66 Cited By ▼		
(C ₃ H ₆), Polypropylene 278K References Reactions Suppliers		Uses (231K) Properties (55K) Process (43K) Biological Study (19K) Preparation (17K) View All	□ 1 Water recovery by treatment of food industry wastewater using membrane processes By: Hernandez, Karina; Muro, Claudia; Ortega, Rosa Elena; Velazquez, Sarai; Riera, Francisco Environmental Technology (2021), 42(5), 775-788 Language: English, Database: CAplus and MEDLINE View Abstract ~ Full Text ~ Image: Full Text ~				
ubstance Role	'View All Role 선택	을 클릭한 후 특정 가능	Filter by		Reference	Ces (1,657)	
1 Selected			 Document Type Substance Role 			▲ Reactions → 66 Cited By →	
 1 Selected Uses (231K) Technical or Engineer Material Use (161K) Polymer in Formulatic Properties (55K) Process (43K) 	ed	 Biological Use, Unclassified (3,100) Miscellaneous (2,377) Occurrence (2,053) Biological Study, Unclassified (1,909) 	Document Type Substance Role Uses (231K) Properties (55K) Process (43K) Biological Study (11 Preparation (17K) Publicant (1 (577))	эк)	Substances - Su	Reactions - Cited By - tment alters microbial colonization on, Maxwell G.; McCormick, Amanda R.; Rojas, e0244443 Language: English, Database: CA Substances (3)	

6

CAS SciFinder

Biosequence 검색

BLAST similarity search	BLAST 있습니다 쉬운 정 시퀀스 BLAST • 메인 S • 시퀀스 • 지원도 FAST • 시퀀스 헤더로 • 원하는	를 통해 유사한 뉴 라. 정렬 결과는 수 밀 필터링과 함께 결과와 관련 문헌 검색 수행 SciFinder ⁿ 검색 페이 파일 또는 시퀀스를 는 형식: 단일 문자 A 포맷), 선행 번호는 입력에는 header I 로 구분할 수 있으므로 대로 BLAST param	〒클리오타이드 및 이 식별 및 적용 범위 백 ┃ 직관적인 그래픽 러 1 연결이 가능합니다 볼 붙여 넣습니다. 코드로 표시되는 잔기를 = 지원되지 않습니다. ine (>으로 시작)이 포함 로 두 개 이상의 일괄 검색 meter를 조정하고 검색을	·미노산 서열을 검색할 수 분율에 대한 사용하기 이아웃으로 표시됩니다. 5 률을 엽니다. 포함하는 시퀀스 (예: 릴 수 있습니다. 시퀀스는 이 가능합니다. · 시작합니다.
Searching for & All Substances Reactions References Suppliers Biosequences	BLAST BLAST > Human Insulin Sequence FVNQHLCGSHLVEALYLVCGERGF	String, or upload a .txt or .fast	a file. Learn more about Biosequence Upload Sequence Clear Sear rcN 파일을 업로드하거나 붙여넣기	Search. Sequence Type: Nucleotide Protein Search Within: Nucleotides Proteins Limit Total Sequence Results to: 20000
Advanced BLAST parameters	Advanced Biosequence Sea Sequence Identity % • - Query Coverage % • 90 BLAST Algorithm BLASTp •	Adjust Parame Match with Gaps? Yes No Word Size • 3 • E-Value • 10 •	tters for Short Sequences Reset All Gap Costs • Existence 11 Extension 1 • Scoring Matrix • BLOSUM62 • Exclude Low Complexity Regions • No •	

BLAST 결과 분석

Access Results

Biosequence 검색 결과는 최근 검색기록 및 일반 검색기록 (ⓒ History)에 나타납니다. 결과를 분석하려면 'View Results'를 클릭하세요. 브라우저를 새로고침 하여 기록을 업데이트 하세요.

CAS SciFinderⁿ

<u> 반응식 검색</u>

Reaction searches 반응식 검색어로는 물질명, CAS Registry Numbers, 문서 식별자 (DOI) 또는 구조식이 가능합니다.

- 결과는 동일한 반응물 및 생성물을 포함하는 Scheme별로 그룹화됩니다.
 Scheme 내 반응식들은 수율 순서대로 정렬됩니다.

earching for	KEACTIONS Search by Substance Name, CAS RN, Patent Number, PubMed ID, AN, CAN, and/or DOI. Learn More
& All	
O Substances	Enter a query
🛆 Reactions	Reactions 선택
References	만응적 구조를 진넥하여 편집
E Suppliers	Edit Drawing Remove
Biosequences	Create Retrosynthesis Plan
	동일 Scheme의 모든 반응식
ture 매치로 구분하기	살펴보기
Structure Match	
	물실 세부징모 확인아기
As Drawn (0)	OH Yield: 67%
Substructure (198)	
Similarity (1.758)	보여지는 반응스
,	Relative stereochemistry shown Relative stereochemistry shown
Filter Behavior 🖉 판매처 보기	7 Suppliers (104)
Filter by Exclude	
> Yield	Reaction Summary Preparation of quinoline-3-carboxamides as H-PGDS inhibitors
90-100% (13)	Reagents Triethylamine Steps: 1 반응식 문헌 확인히
80-89% (16)	Water World Intellectual Property Organization, WO2017103851
70-79% (29)	Catalysts - (물질 세부정보 확인) A1 2017-06-22
50-69% (23)	PATENTPAK - Full Text -
30-49% (12)	
View All	Conditions 2 stages
Number of Steps	View Reaction Detail ← 반응식 세부정보
1 (198)	Reaction Summary Preparation of 1,3-disubstituted cyclobutane or
Non-Participating Eurotional	Reagents Triethylamine Steps: 1 azetidine derivatives as hematopoietic prostaglandin D
Groups	Diphenylphosphoryl azide Yield: 67% Dr. Darten, David Marmani et al.
Carbamate (55)	Water By: Deaton, David Norman; et al World Intellectual Property Organization, WO2018069863
Ketone (47)	Catalysts - A1 2018-04-19
Cyclic ketone (46)	Solvents tert-Butanol PATENTPAK - Full Text -
Halide (45)	Conditions 2 stages
Carboxylic ester (25)	View Reaction Detail
View All	View All 4 Reactions
	The first field of S
 Reaction Mapping 	

CAS SciFinderⁿ

<u>반응식 세부정보</u>

Reaction details 용매, 촉매, 반응물, 컨디션을 포함한 세부정보와 문헌과 supplement에서 추출한 실험 프로토콜을 나타냅니다.

Absolute s	tereochemistry shown,	ОН	\rightarrow $\land \circ $	the second secon	Steps: 1 Yield: 85%
	Rotation (+)	[Stage 2]	Rot	ation (-)	
	Suppliers (38)	🚆 Suppliers (126)	🛱 Su	pplier (1)	관련 문헌 보기
Ste	p 1				Reference Development of a Scalable
			내세 만증 건	니션 모기 두 Alternative Steps (5)	Pyrimidine Inhibitor of Influenza
Stage	Reagents	Catalysts	Solvents	Conditions	Virus Replication
1	Triethylamine Diphenylphosphoryl azide	-	Toluene	2 h, reflux; reflux \rightarrow 60 °C	By: Liang, Jianglin; et al View All ~ 모든 저자 보기 Organic Process Research &
2	-	-	-	overnight, 60 °C \rightarrow 80 °C	Development (2016), 20(5), 965-
					969

perimental Proto	
MethodsNow™ ┏	상세 절차를 포함한 실험 프로토콜 보기
Products	Ethyl (1 <i>R</i> ,3 <i>S</i>)-3-[(benzyloxycarbonyl)amino]cyclohexanecarboxylate, Yield: 85%
Reactants	1,3-Cyclohexanedicarboxylic acid, 1-ethyl ester, (1 <i>R</i> ,3 <i>S</i>)-
	Benzyl alcohol
Reagents	Triethylamine
	Diphenylphosphoryl azide
Solvents	Toluene
Procedure	 Add diphenylphosphoryazide (DPPA) (166 mL, 769 mmol) and triethylamine (107 mL, 769 mmol) to (15, 3R) -3-ethoxycarbonylcyclohexanecarboxylic acid (140 g, 700 mmol) in toluene (1.4 L). Reflux the mixture for 2 h under N₂.
	 Cool the reaction mixture to 60°C and add benzyl alcohol (87 mL, 839 mmol) in one portion. Heat the mixture to 80°C overnight
haracterization Data	 Cool the reaction mixture to 60°C and add benzyl alcohol (87 mL, 839 mmol) in one portion. Heat the mixture to 80°C overnight Stir the mixture and separate the layers. 분석 정보 살펴보기
haracterization Data Ethyl (1 <i>R</i> ,3 <i>S</i>)-3-[(3. Cool the reaction mixture to 60°C and add benzyl alcohol (87 mL, 839 mmol) in one portion. 4. Heat the mixture to 80°C overnight 6. Stir the mixture and separate the layers.
haracterization Data Ethyl (1 <i>R</i> ,3 <i>S</i>)-3-[(Proton NMR Spectrum	 3. Cool the reaction mixture to 60°C and add benzyl alcohol (87 mL, 839 mmol) in one portion. 4. Heat the mixture and separate the layers. ● 분석 정보 살펴보기 benzyloxycarbonyl)amino]cyclohexanecarboxylate (300 MHz, CDCl₃) 87.48-7.30 (m, 5H), 5.11 (s, 2H), 4.67 (s, 1H), 4.13 (q,J=7.1 Hz, 2H), 3.55 (s, 1H), 2.42 (t,J=11.8 Hz, 1H), 2.28 (d,J=12.6 Hz, 1H), 2.10-1.79 (m, 3H), 1.50-1.19 (m, 6H), 1.19-1.00 (m, 1H).
haracterization Data Ethyl (1<i>R</i>,3<i>S</i>)-3-[(Proton NMR Spectrum Optical Rotatory Power	3. Cool the reaction mixture to 60°C and add benzyl alcohol (87 mL, 839 mmol) in one portion. 4. Heat the mixture and separate the layers.
haracterization Data Ethyl (1<i>R</i>,3<i>S</i>)-3-[(Proton NMR Spectrum Optical Rotatory Power HRMS	3. Cool the reaction mixture to 60°C and add benzyl alcohol (87 mL, 839 mmol) in one portion. 4. Hent the mixture and separate the layers. 분석 정보 살펴보기 benzyloxycarbonyl)amino]cyclohexanecarboxylate (300 MHz, CDCl ₃) 87.48-7.30 (m, 5H), 5.11 (s, 2H), 4.67 (s, 1H), 4.13 (qJ=7.1 Hz, 2H), 3.55 (s, 1H), 2.42 (t,J=11.8 Hz, 1H), 2.28 (d,J=12.6 Hz, 1H), 2.10-1.79 (m, 3H), 1.50-1.19 (m, 6H), 1.19-1.00 (m, 1H). =-33.3° (c = 1 in DCM). (ESI) [M + H] ⁺ calculated for C ₁₇ H ₂₄ NO ₄ 306.1700, found 306.1700

10

역합성 플래너 (Retrosynthesis)

Launch plan generation

SciFinderⁿ Retrosynthesis Planner를 시작하는 두가지 방법

❶ 반응 구조를 그린 후 Create Retrosynthesis Plan을 클릭하여 시작 ❷ 물질 구조의 플라이아웃 창을 열고 생성 시작

Plan options

계획 옵션 수정을 통해

- 합성 길이/깊이 조절
 - Protect bonds를 통한 전체 합성 경로 설정
- 첫번째 Disconnection 설정
- 유의미한 대안으로 계획 설정
- 예: for poly- or heterocyclic molecules

플랜의 disconnection 수 설정하기

CAS 🐉 SciFinder[®]

역합성 플랜 및 대체 스텝

Open plan

Experimental Plan은 몇 초 안에 사용할 수 있으며 Predictive Retrosynthesis Plan (예측 역합성 플랜)은 조금 더 오래 걸립니다.

Alternative steps 모든 실험 및 예측된 disconnection에 대한 개요를 제공합니다. 증거로 사용된 반응식은 반응식 결과세트로 표시됩니다. • 증거로 사용된 반응식은 0 Steps Overview에서 연결하거나

😢 Alternative reaction scheme (대체 반응)에서 확인할 수 있습니다.

CAS SciFinder[®]

점수 옵션

Scoring Options 예측 단계를 포함한 플랜의 경우, 계획/대안 단계에 표시되는 내용을 결정하는 프로필의 점수를 높이거나 낮출 수 있습니다.

- 각 점수 프로필은 끄기, 낮음, 중간 또는 높음 중 설정할 수 있습니다.
- 각 프로필의 기본 설정은 아래와 같이 "중간"입니다.
- 슬라이더를 왼쪽 끝으로 이동하면 해당 프로필의 점수가 "끄기"로 설정되어 스텝 선택이나 대체의 순위에 중요 요소로 작용하지 않습니다.

Overview Steps Scoring	Complexity Reduction
Scoring Profiles	Reduces the complexity of a step's reactants compared to its product.
Complexity Reduction	In retrosynthesis plans, you typically want high complexity reduction.
Convergence Medium	Convergence Determines how "branched" the plan is; you typically want the plan to be as branched as possible (high convergence), rather than linea
	For a given step, the more precursors there are, and the closer their relative sizes are, the more it's considered convergent.
Yield O	Increasing Convergence displays steps/alternatives with more reactants.
Atom Efficiency O	Fvidence
	Ranks plan steps/alternatives based on the number of evidence examples supporting the particular reaction type.
Apply Reset Scoring	More evidence examples for a step means that the reaction type has more applications and is more versatile in terms of conditions and substrates, and hence predictions made based on it are probably more reliable.
	Increasing Evidence displays steps/alternatives with more supporting examples.
	Yield
	Applies to the yield of each step in the plan, which contributes to the yield of the target molecule.
	Increasing the Yield displays a higher yield target molecule and steps/alternatives.
	Atom Efficiency
	Reduces reactant parts not included in a plan step's product.
	Increasing Atom Efficiency displays steps/alternatives with the least amount of reactant atoms that do not map to the product.
icking the Apply button	predraws the retrosynthesis plan with the revised scoring profiles: clicking Reset Scoring restores the "Medium" default.
	ор стана стана Ор стана с
Apply	Reset Scoring

Markush 검색 및 PatentPak

Markush searching

Markush 구조 검색은 Substance 검색 모드에서 "Search Patent Markush" 기능을 사용하여 수행할 수 있습니다.

판매처 검색 및 ChemDoodle®

Suppliers searching

물질명, 화학 구조식 또는 기타 식별자를 통해 판매처 검색을 하여 카탈로그에 직접 연결이 가능합니다.

ChemDoodle®

ChemDoodle structure editor is available in addition to the standard CASdraw editor. ChemDoodle is useful for tablets and mobile devices.

15

CAS 🐉 SciFinderⁿ

로그인, 피드백, 도움말

Login Details http://scifinder-n.cas.org • SciFinder 아이디와 비밀번호로 로그인 Feedback Button CAS에 직접 피드백을 전달할 수 있습니다. Feedback SciFinderⁿ 교육 토픽: Learn More https://www.cas.org/support/training/scifinder-n 예정 및 녹화된 SciFinderⁿ 웨비나: https://www.cas.org/about/events/scifinder-webinars Contact Customer <u>help@cas.org</u>로 이메일 보내셔서 CAS Customer Center의 도움을 받아보세요. Support **CAS Contacts** CAS Korea Team, korea@acs-i.org 국내 담당자의 도움이 필요하실 때에는 CAS Korea Team으로 문의 주세요.

